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OPTIMAL TRANSFER IN THE EQUATORIAL PLANE OF AN AXISYMMETRIC PLANET

WITH AN ADDITIONAL CLAIM OF ACCURACY

A. N. Kovalenko

In conformity with the general theory of problem solving for /19

optimization of pulsed transfers in studies [1]-[3] using the me-

thods stated in the works of V. S. Novoselov [31-[5], a closed sys-

tem of 22 equations is derived to define the energetically opti-

mal realization of a two-pulse transfer between elliptical orbits

in the equatorial plane of an axisymmetric planet, with a correc!

tion for accuracy. The corrections for accuracy of performing the

transfer are on the order of one less than the total energy con-

sumption. This system can be used to specify already existing

optimal simulated transfer between plane orbits.

1. Several Relationships Employed

The minimized functional of this study appears in the form

+ V2+/V V+ V 2  (1)

where V ll V12 are projections of the characteristic velocity V1
onto the radius-vector and transversal for the first pulse;V 21,
V22 are the corresponding values of the second pulse; a are the

dispersions of the next values in a finite orbit: radial and trans-

versal constituents of velocities vr and v , the values of the

radius-vector r and the angle c measured from some stationary di-

rection; P. -- weighted coefficients.
1

The values .2 are, apparently, functions of the dispersion /20

a 2 for values V, V 2 V21 , V22 (we assume it to be identical

for all four characteristic velocities), and of the parameters of

the transitional orbit and the force field. By analogy to study
2 2

[4), we can derive a connection between 2 and a : [sic]
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2[Or+ 2 ./Or+ \21 (2)

2 2 O,+ ,2 ' 2 O + '21

Here and henceforth, the index 'minus' will denote the value at

the start of the transitional ellipse;_1the'indx 'ius'--the end

of the transitional ellipse. Isochronous derivatives on the right

side of (2) for Keplerian motion exist in study [6], while for the

case of the equatorial plane of an axisymmetric planet--in study

[7].

The derivation of some equations of the system produced by

us coincides with the statement, for instance, of.study [3]. This

derivation of eight limiting conditions using another two equalities

for ri , ru (the index 'i' from now on signifies the value at the

initial orbit at the instant immediately before the pulse, the in-

dex 'u'--in the ultimate orbit at the instant immediately follow-

ing the pulse) are the same as four equalities derived from the

condition of discontinuity of Lagrange coefficients where, it is

true, the coefficients themselves must be selected for an axi-

symmetric planet from study [8].

These coefficients for an equatorial plane of this planet

can have the form

XA,=A cosf+Be sin f+CI-a(t-to) x 1-2 2  sin fx
p72 (3A(1 + 2  inf x

, X2=-A sinf (I + -) +B--+CJ+D+ -

+t (t-to) e ( 2)12 A 3- -- --

p e2 3-e) r]

32 - '2 [A sinf -- B CK-D ~
2 r2 PPi



+(t-to) r e(-e2)112 4A+ (1-e)-
rp4  - e22) -/2

-(3A+iCe)A1,
eA

. . . . . .( 3 )

Here A, B, C, D are arbitrary constants, subject to definition:

I, J, K are Louden functions equal to [8]:

I= -cosf--+2eW sinf,

r

K= sin f - .2 W,
f..

W( C cos f df
( cos fdf

sin f r r 3 t ' 3 r1 + xe a(t-to)xe
S(1-e2

) p2  p3/2 (I-e) ;p7 12 (l e2)112

(4)

Moreover in (3)-(4) the following customary nota tions are employed:

e, p, f--eccentricity, the parameter and agitated true anomaly;

K2--constant of gravitation; a--small dimensionless parameter, de-

scribing the nonsphericity of the planet; t--current time; t0

some initial epoch for which the limiting osculating orbits are

given; the values without an index are related to the transitional

ellipse and correspond to time t; t --time of passage through the

pericenter; r e--equatorial radius of the planet.

Otherwise, the derivation of these 14 equations contains

nothing novel and will not be discussed. Let us write only the

general equations associated with it and employed henceforth--

those which describe the osculating ellipse [9]:

-sin f

Pil2 -
re/x r e=0, -

(5)
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Here w is the angular distance of the pericenter; M--the average

anomaly.

2. Discussion of the ConditionpfK,' /22

Transversality

The condition of transversality is the most important part

of the derivation of a system of equations. According to [2], [4]

it is written as

4
4i PLw+ (aX V,.+A 2 AV +X3 ±X 4 A.p + HAt) = 0. (6)

The arbitrary motion along the limiting orbits is assumed. The

problem consists of deriving from (6) finite relationships which

can be done by switching to a set of independent variations. We

will prove that these can be Ati , Atu, Afi, Af . Let us consider

a point in the initial orbit. Because we are not considering con-

crete motion, we are free to arbitrarily select the time of the

first pulse ti and fi--the true anomaly of the start. From a

point in the field of gravitation of the axisymmetric (and spher-

ical) planet--and having selected ti and fi., we fixed that point--

we can find a two-parameter family of ellipses. Let us now select

tu, and thereby we fix the ultimate ellipse and time of flyback

t - ti.. And having selected fu', we derive the second point in the

plane; two the two points in the force field under investigation

passes only one or more trajectories with a prescribed flyback

time t t..
u 1

Therefore, it has been shown that the assignment of t., t ,

fi' f defines all other variables in (6):ri., ru , e, p, f , f .
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Let us note that in the case of a central field, due to the

immobility of the limiting orbits, we do not have to fix ti and

the number of independent variables decreases to three: fi, fur

t t. = T.
u 1

Let us reveal the condition of transversality of (6), using

(5) and moving over to ti, tu, fi' fu:

4 4 4 4
P, -Oa A -K

i= i=l i=1 i=1

( pxe _p;1f2 cosfR -X- p- 2e, sinf+, r- e sinf+)D 2A +
(1xe p~ COS f+ Ic 11 Sine, -- f- Af +

P P H

--O'e, p-1l2 cosf,-- Hxe p-112 sinf,+ !i ep sinfH + Af

(7)

The expressions for Ati,Atu, Afi , Afu are equal to zero with res-

6pect to the independence of variations, respectively.

Let us study the expressions

, O t, ' Ot, ' Of 1  ' OfK

The value ac2 according to (2) and study [7] is a function of the
i - +

variables t., t , e, p, f , f

Hence we can write the equalities /23

at 1  a O e t Op +t1  Of- +d f +
- dt, de at, Op at Of- at, Of+ Ot

1 ld def de do - p d1  o f- dOf4 Of+

(8)
do doa de do Op do0 Of- do k f+
dfa = de Of d p f t Of- Of, f+ Of,o do± de ada Op 0 af- a,2 af+

S de Of, Op fK +Of- +f+ j



The question arises on the derivation of the following matrix

of derivatives:

I p, e f-, f+ j
t,,, t,. fH ,/K li

Let us first calculate this matrix for the case of Keplerian

motion. According to the remark on pages 4-5, let us examine three

independent variables.

To calculate this matrix directly, we must know four relation-

ships connecting the variables p, e, f , f , T, f and fu. They

are

=e1 eos f)2 - T
(9)

P e-cosf, .(1+ecosf+), p=+e s (l+e.cosf-).

Here the first relationship is the equality of the angular range

of flyback to the difference of angles of the finish and start

points from some direcion; the second equality is the ,integrated

integral of areas in which is posited f = f+, t = tu , then f 
=

= f, t = t and the second is subtracted from the first; the

third and fourth equali'ties are a description of the condition
+

r = r and r = r..
u 1

Let us differentiate (9) with respect to T:'

Of+ Of---- =0,OT _dT
_0f+ r 2 f- n2.+W e 3 nT dp, , 1',

-'T "p-- -W\ OT 2 plT

1 p ... + de . + f+
---- o . esinf- e syOT'

I Op de f
os f- --- e sinf- T
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Here, in the second equation, the possibility is employed of re-

moVing 3e/DT from beneath the integral sign ini,,iiew of the fact

that e = e(fi, fu, T) is not a function of f. The system produced

is linear with respect to the unknowns Of+ Of- de Op /24
OT ' OT ' .' o

and is easily solved:

Of+ Of- xP /2U
T -T 3 x

2 -- ' l e sin fT - 2 p2 (W+-W-) eS +(r2-r)U

Oe _p' 12eS
OT 3 x (10)

-- -2 2e sin cT-'2p2 (W+-W-)eS+(r2--r2) U

Op %p'i2e sin y
dT 3 x

2 1/2 e sin yT-2p2 (W+--W-)eS+(r2--r2) U

Here the notations are used:

+--f-; sin f+ sin- = cos f+ cosf-
rr rK rH rK

Let us differentiate (9) with respect to fi

Of+ Of -
Of, Of,

IxT Op
r r - 2p (W- iW-) + f0'

I ap de df+
., H Ofr HOS S

cosf- --- esinf 0+-eAsinf.

SolVing this system we find that
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Of+ I stn f- _3 e cos f+ sinj-77 i r -U-2p2(W+--) e r + -I xT p12

P 3 Tcos f+ _W+--W- __

pi e2 sinf, 1 1i2  r.

f-2p2 sin + 3 e sinf+ f+ cos f -p. zT 1/2 ZP" -

p 3 T cos f + +--1
e sin f x i 2 2p 2 rW+ W

de I [ 3 Te1
--- TXe sinf- sin f+-e (r, sinf--r.,sinf+) -

P- eH sinf i-- e sinf -  ,

2p (W +- W-) e2 sinf- sinf+ -e (r , sinf- cosf+ -

-. rH sinf+ cosf-) - - ej sinf [(r-rt) cos f+ +

+ 2p2e sinf+ (W+-W-)},
(11)

where X is the denominator in (10). Differentiating (9) with re- /25

spect to fu and solving the derived system, we find that

,f " - [ - r.U+2p2 (W+- W-) e sn f
SrKrU+22

ecos f+sinf-+ e esinf. x

2 - cos f--p rH
-r2U+2p2(W+

-- -p7 e sinf + cosf-+-E e. sinf, X2 p12 P
X3 %T W+-W-

X -7 cosf--2P2 r " '

Oe [-3 T2 e 2 sinf+ sin f-+e (r. sinf-r -sinf+) +

3 %TSe sinf2 e a- f

fp X -,2p 2 (W+-W-) e2 sinf- sinf + +

+e (r2 sinf- cos f+-r sinf + cos f-)+

--- e sinf. [(r -r.) cosf-+2p2 e sinf- (W + - -)] (12)

Formulas (10), (11), (12) produce the matrix - ap, eI/ I

for Keplerian motion. Because the derivatives appearing in this

matrix, according to (8), (2), (7) will be multiplied by P. 2 , it

is sufficient to know it for Keplerian motion and for the solution
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of the problem with accuracy to within the first negative power.

Moreover, we can indicate a means of calculating the matrix

II p, e f-. /
i;l, .f, , f f+i even for flyback in the equatorial plane of an axi-

symmetric planet. For this purpose, we must differentiate instead

of (9) the analogous equations in a new force field:

. o+ (t-to) X (1-e2)3/2 ---o -2

-+a(t-to) r (1-e0)3/2-f,+

P''

7df- __ ( ar21 1 2 f
(1+ eCOsf)2 p

p (1 +eK cosf H)-p (1 +e cosf+),
p (I +e. cosf,)=p (1+e cosf-).

The linear systems obtained after differentiation are solved with /26

respect to the terms of the unknown matrix.

The knowledge of the matrix P eIII (or the matrix'

l p, e, f-,/ J+
S-T,-K,, { ), makes it possible to derive from the condition

of transversality in the form of (6) finite relationships for the

arbitrary coplar elliptical orbits in the central field, and also

for elliptical orbits in the equatorial plane of an axisymmetric

planet.

3. Writing the System of Equations

Let us return to (7) and write the finite relationships

mentioned on its basis and on the basis of (8).

Equating the bracket to zero at Ati produces

4 4 4
-H Ot 0 -. Oe OT P, +

i=1 i=1 i=1

4 4 (13)
f-- o . Of+- 4X= 7 1 (--e")3'2; 9

1 1 11PH



the bracket at t
u

4 4 4

at ,  at, ra op .i=1 i=1 i 1
4 4

Of- at, Of+ (1 e)2 (14)

the bracket at f.--

4 4 4
Oe 00- Op ± Of-0o- - -1-
dH de fH Op OfH

l=1 l=1 1=1
4

+ fH L i _ (X-xe" p "1/2 cos!.--),xe, p-12 sin+ f+
i=1 

2

the bracket at f --

4-

ae de . Op af- P4 .f

i=1 i=1 i=1
4

o/+ 'a2
SP i + )xeK 2 COS fK -xep-1 2S Sinff+

i=1

+ r e, sinf+4-=0: (16)

In equations (13)-(16), the derivatives of o. are calculated in /27

terms of (2) and study [7]; the derivatives of e, p, f , and f+

are calculated for the case of Keplerian motion according to (10)-

(12); the Lagranqe coefficients are taken from (3) wifth the cor-

responding indexes 'i' and 'u'.

Herein we must add the value of H, calculated according to its

definition (cf. [81):

H=2 -2C.(17)

10



Let us add to (13)-(17) the remaining conditions of optimal fly-

back.

The limiting conditions:

xep - 12 sinf--xesp /IsinfH= V1 cos ,. (18)

xep -i2 sin f+ xep-1i2 sin.F,= --V2 cos 2 , (19)

V 2plrZ,-:-x ' I-=--Isin~,, 1'. (21)

p . (1+e cosf)=P(l+eHc-sf- - / (22)

SK(+e cosf)=p (1+e cosf ),  (23)

p . C o P ( 2 3 )

f-+o+a(t -to) (1-e (24)

/+ + (t to) (1 -e 2
)

312 = f. +WK + a1 r( -e2) (25)

rH=p( +eCOsf- (26)

rK 27).r, =2 + j 68 S f +)7 (2 7 )

Here 1' ,2 are the angles between Vl, V2 and the radius-vector.

The conditions of discontinuity of the Lagrange coefficients:

A cos f-+Be sin f+C--- (t,,-) e ie2 (2 x /
3A+ / (28)

x(3A+ -- )cos,

11



A cosf++Be sinf++CI+--. (t-to) - e2 (1-e2)11 2 X

x (3A + 1 = cos(, (29)

-A i1+ -H-) sinf -r-+C-+D r+
p r. p

+ (t-t A[--3 4(1 -e)
p_ rH P-

+ [ P 3(1 -e 2) 1=in .e r (30)

-A 1 + ;)sinf+ B +CJ+ D r+

S-712 e4112 [- P

Cp 3 (1-e2) rKI = Sin'
e2 r,, P (31)

The connection of time with, the true anomaly is given through the /28

introduction of eccentric anomaly E and the Kepler equation:

tg , 12 tg , (32)

+ - 1-e \1/2 f+

t 2 2 (33)

E+-e sin E+ =

=E--e sin E-+ (t.-t) ((1-- 2 I2

\ -. " - (34)

The system (13)-(34) is a system of 22 equations with 22 unknowns:

p, e, wo, f-, .f+.; f,, A r,, r., V,, V2,

. 1, 42, A, B, C, D, H, ti, tK, E-, E+.

Some values in (13)-(34) are small, which is quite useful in de-

riving the system. The correction for accuracy

12



is small versus the total energy losses and this circumstance

is useful in deriving formulas (2). Also small is the parameter

of nonsphricity a, which is used in several places in section

1 for derivation of formulas (3), (5) and others.

But if in (3) and (5) we assume the values Xi , e, p, w, M

calculated with accuracy to within the first negative power ex-

clusively, then we must consider the value a(tu - t0 ) and not a

to be small, for otherwise its contribution to the first power in

these values bears a more complete account of nonsphericity than

is done in this study (axisymmetric planet). The last comment

excludes the use, within the framework of this study, of the

alluring selection of such moment ti (or t ) at which the limit-

ing orbits will come into coaxial juxtaposition, affording energy

savings.

Being transcendental, system (13)-(34) is extremely diffi-

cult for general solution. We now do not even know its solution

under the assumption a = 0, Pi = 0. The question arises as to

the expediency of deriving such a system. Here we can indicate

the importance of using it to specify existing optimal simulated

transfer. That is, assuming we know the zero approximation found

numerically or otherwise, and substituting this in (13)-(34), we

produce ,the problem of a precision derivation near the given

simulated transfer of a second, less error-sensitive transfer for

implementing the pulses. In this context, it is also possible to

account for nonsphericity,. In addition to the concrete derivation

of this solution, the problem of a general study of the nighbor-

hood of the given simulated transfer for accuracy of implementa-

tion is possible, also using system (13)-(34). The concrete exe- /29

cution of such predision is most simple to demonstrate in the

neighborhood of the Homann ellipse.
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